The nesC Language: A Holistic Approach to Networked
Embedded Systems

David Gay, Phil Levis, Robert von Behren, Matt Welsh, Eric Brewer, and David Culler

IRB-TR-02-019

November, 2002

DISCLAIMER: THIS DOCUMENT IS PROVIDED TO YOU "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY
WARRANTY OF MERCHANTABILITY NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE. INTEL AND
THE AUTHORS OF THIS DOCUMENT DISCLAIM ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY
PROPRIETARY RIGHTS, RELATING TO USE OR IMPLEMENTATION OF INFORMATION IN THIS DOCUMENT. THE
PROVISION OF THIS DOCUMENT TO YOU DOES NOT PROVIDE YOU WITH ANY LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS

Ntelpesearch
Copyright 2002, Intel Corporation, All rights reserved. BETkElE"}f




The nesC Language:
A Holistic Approach to Networked Embedded Systems

David Gay,* Phil Levis,* Robert von Behren,* Matt Welsh,* Eric Brewer+ and David Culler+*

* University of California at Berkeley, *Intel Research, Berkeley
http://nescc.sourceforge.net/

Abstract the hardware/software boundary varies depending on the applica-
We presentesC a programming language for networked embed- tion and ha_rdware platform; it is important to design for flexible
decomposition.

ded systems, such as sensor network “motes,” which represent a
new design space for application developers. Sensor networks con-
sist of (potentially) thousands of tiny, low-power “motes,” each of Driven by interaction with environment: Unlike traditional com-
which execute concurrent, reactive programs that must operate withputers, motes are used for data collection and control of the local
severe memory and power constraints. environment, rather than general-purpose computation. This focus

nesC's contribution is to support the special needs of this domain leads to two observations. First, motes are fundamentally event-
by exposing a programming model that incorporates event-driven driven, reacting to changes in the environment (message arrival,
execution, a flexible concurrency model, and component-oriented sensor acquisition) rather than driven by interactive or batch pro-
application design. Restrictions on the programming model al- cessing. Second, event arrival and data processing are concurrent
low the nesC compiler to perform whole-program analyses, includ- activities, demanding an approach to concurrency management that
ing data-race detection (which improves reliability) and aggressive addresses potential bugs such as race conditions.

function inlining (which reduces resource consumption). . Limited resources: Motes have very limited physical resources,
nesC has been used to implement TinyOS, a small operating SyS-y, e 16 the goals of small size, low cost, and low power consump-

‘e”? for sensor netwqus, as well as several significant sensor appli- ion. We do not expect new technology to remove these limitations:
cations. nesC and TinyOS have been adopted t_)ya large number_o{he benefits of Moore’s Law will be applied to reduce size and
sensor network research groups, and our experience and evaluatioR g *rather than increase capability. Although our current motes

OI the language shows thqt It s leffgctlve ? zubpp(;]r.tlng thel com-f are measured in square centimeters, a version is in fabrication that
plex, concurrent programming style demanded by this new class o measures less than 5 im

deeply networked systems.

There are a number of unique challenges that nesC must address:

Reliability: Although we expect individual motes to fail due to
hardware issues, we must enable very long-lived applications. For
L INTRQDUCTION . . example, environmental monitoring applications need to collect data
Advances in networking and integration have enabled small, flex- \ithout human interaction for months at a time. An important goal

ible, low-cost nodes that interact with their _environment through is to reduce run-time errors, since there is no real recovery mecha-
sensors, actuators and communication. Single-chip systems areism in the field except for automatic reboot.

now emerging that integrate a low-power CPU and memory, ra-
dio or optical communication, and substantial MEMs-based on-
chip sensors; these nodes are colloquially referred to as “motes

Soft real-time requirements: Although there are some tasks that
»are time critical, such as radio management or sensor polling, we

or “smart dust” [49]. Target costs (for single-chip motes) are less 9'0 _not focus on hard real-tlr_ne guarantges. Our EXperience so far
than 10 cents per unit, which enables networks with potentially indicates that timing constraints are easily met by having complete
tens of thousands of motes. Target power consumption means thaf©ntrol over the application and OS, as well as by limiting utiliza-
motes can last years with low-bandwidth communication, or even 0N One of the few timing-critical aspects in sensor networks is
be battery-free when fueled by ambient power (e.g., heat from the radlo commqnlqatlon; .however, given the fundamental unrehab”-
environment). ity of the l:adIO link, it is not necessary to meet hard deadlines in
In this paper, we present nesC, a systems programming languagdis domain.
for networked embedded systems such as motes. nesC supports a Although nesC is a synthesis of many existing language concepts
programming model that integrates reactivity to the environment, targeted at the above problems, it provides three broad contribu-
concurrency, and communication. By performing whole-program tions. First, nesC defines a component model that supports event-
optimizations and compile-time data race detection, nesC simpli- driven systems: the model provides bidirectional interfaces to sim-
fies application development, reduces code size, and eliminatesplify event flow, supports a flexible hardware/software boundary,
many sources of potential bugs. and admits efficient implementation that avoids virtual functions
A key focus of nesC is holistic system design. Mote applications and dynamic component creation. Second, nesC defines a simple
are deeply tied to hardware, and each mote runs a single applicatiorbut expressive concurrency model coupled with extensive compile-
at atime. This approach yields three important properties. First, all time analysis: the nesC compiler detects most data races at compile
resources are known statically. Second, rather than employing atime. This combination allows applications to exhibit highly con-
general-purpose OS, applications are built from a suite of reusablecurrent behavior with very limited resources. Third, nesC provides
system components coupled with application-specific code. Third,



Mote Type WeC [rene2 | rene2 dot mica lored for event-driven applications as well as a very small footprint
@ @ ! (the core OS requires 396 bytes of code and data memory, com-
Sais 55 1070 [ 601 o —— blned). qu of our motlyatlons |r; de5|gn|ng nlesC were to sup-
Microcontrolier port TinyOS's programming model and to reimplement TinyOS in
Type AT90LS8535 ATMegal63 ATMegal03 the new language. TinyOS has several important features that in-
Prog. mem. (KB) 8 16 128 fluenced nesC's design: a component-based architecture, a simple
RAM (KB) 05 1 4 event-based concurrency model, and split-phase operations.
Default Power source
[ Size [ CR2450 | 2xAA [ CR2032]  2xAA | Component-based architecture TinyOS provides a set of reusable
l gﬁpmarﬁm(c”;ﬁ:% [ 575 | 2850 | 225 | 2850 |  gystemcomponentsAn application connects components using a
Radio REM TRI000 Wir_ing specificatio_mhe_lt is indepe_ndent of component implemen-
Rate (Kbps) 10 [ 10 [ 10 | 10 | 10/40 tations; each application customizes the set of components it uses.
Modulation type OOK | OOK/ASK Although most OS components are software modules, some are
_ ] thin wrappers around hardware; the distinction is invisible to the
Table 1: The family of TinyOS motes. developer. Decomposing different OS services into separate com-

ponents allows unused services to be excluded from the application.
a unique balance between accurate program analysis to improve reWVe present nesC's support for components in Sections 3.1 and 3.2.

liability and reduce code size, and expressive power for building Tasks and event based concurrencyThere are two sources of
real applications. In addition to static data race detection, the nesCconcurrency in TinyOStasksand events Tasks are a deferred
compiler performs static component instantiation, whole-program computation mechanism. They run to completion and do not pre-
inlining, and dead-code elimination. We prohibit many features empt each other. Components gaosttasks; the post operation
that hinder static analysis, including function pointers and dynamic immediately returns, deferring the computation until the scheduler
memory allocation, but are capable of supporting complex applica- executes the task later. Components can use tasks when timing re-
tions and a substantial user community. quirements are not strict; this includes nearly all operations except
nesC is used as the programming language for TinyOS [16], & |ow-level communication. To ensure low task execution latency,
small operating system for sensor network applications that is in individual tasks must be short; lengthy operations should be spread
use by more than 100 research groups worldwide. Several signifi- across multiple tasks. The lifetime requirements of sensor networks
cant sensor network applications have been implemented in nesC prohibit heavy computation, keeping the system reactive.
including TinyDB[29], a sensor network query processing engine,  Eventsalso run to completion, but may preempt the execution
andMate[28], a small virtual machine that allows rapid reprogram-  of a task or another event. Events signify either completion of a
ming of sensor networks. split-phase operation (discussed below) or an event from the envi-
Section 2 presents background material on sensor networks andtonment (e.g. message reception or time passing). TinyOS execu-
introducesSurge a sample nesC application used as a running ex- tion is ultimately driven by events representing hardware interrupts.

ample throughout the paper. Section 3 presents the nesC designive discuss the refinement and inclusion of TinyOS'’s concurrency
Section 4 summarizes our experience with nesC and evaluates thgnodel into nesC in Sections 3.3 and 3.4.

effectiveness of data-race detection and inlining. We conclude with
a survey of related work (Section 5) and a discussion of nesC and
its future directions (Section 6).

Split-phase operations:Because tasks execute non-preemptively,
TinyOS has no blocking operations. All long-latency operations are
split-phase operation request and completion are separate func-
tions. Commandsre typically requests to execute an operation.
2. BACKGROUND If the operation is split-phase, the command returns immediately

Wireless sensor networks are composed of large numbers of tinyand completion will be signaled with an event; non-split-phase op-
resource-limited devices called “motes.” A first application of these €rations (e.g. toggle an LED) do not have completion events. A
networks is data collection in uncontrolled environments, such as typical example of a split-phase operation is a packet send: a com-
nature reserves [30] or seismically threatened structures [25]. FourPonent may invoke thgend command to initiate the transmission
key features have emerged in networks we have deployed: interac-Of & radio message, and the communication component signals the
tion with the local environment though sensors, communication via sendDone event when transmission has completed. Each compo-
a wireless network, lifetime requirements of months to a year, and nent implements one half of the split-phase operation and calls the
physical inaccessibility. other; the wiring connects both commands and events across com-

Table 1 presents several generations of motes designed at UC Befi@1ent boundaries. We discuss how nesC captures split-phase op-
ley. Although very resource constrained, motes must be highly re- erations in Section 3.1.

active and participate in complex distributed algorithms, such as  Resource contention is typically handled through explicit rejec-
data aggregation [19, 29] or spatial localization [50]. This com- tion of concurrent requests. In the example above, if the commu-
bination of requirements makes traditional operating systems and njcation component cannot handle multiple concursemd op-
programming models inappropriate for sensor networks. Mote hard-erations, it signals an error when a concurrastd is attempted.
ware evolves rapidly: Table 1 covers five platforms in three years, Alternately, the communication component may queue the request
with different sensors and varying levels of hardware support for for future processing.
Operations such as radio-based messaging. A sensor network OpP- The simp|e concurrency model of T|nyos allows h|gh concur-
erating system and programming language must make it easy forrency with low overhead, in contrast to a thread-based concurrency
applications to adapt to these changes. model in which thread stacks consume precious memory while
. blocking on a contended service. However, as in any concurrent
2.1 TmyOS system, concurrency and non-determinism can be the source of
TinyOS [16] is an operating system specifically designed for net- complex bugs, including deadlock (e.g. the Mars Rover [22]) and
work embedded systems. TinyOS has a programming model tai-



v v v A module TimerM {

Surge StdControl Timer provides {

interface StdControl;
Timer/SendMsg\_eds ADC TimerM ) interface Timer;

HWClock uses interface Clock as Clk;
Timer Multihop Leds Photo |
lc'ock SendMsg Figure 2: Specification and graphical depiction of thémerm
! component.
HWClock QueuedSend ReceiveMsg
terface), and communicatiosénd interface). The code is there-
SendMsg fore independent of the particular sensor hardware used. For exam-
1 ple, ADCcould easily be wired to a temperature sensor rather than
GenericComm a light sensor, as long as the two provide the same interface.

3. nesCDESIGN

. P . o ) In this section we discuss the primary concepts in nesC's de-
Figure 1: Simplified view of the Surge application. Nodes repre sign. First, nesC applications are built out amponentsyith

sent components, and edges represent interface wiring. Edges are ) e R :
labeled with the corresponding interface name. well-defined, bidirectionahterfaces Second, nesC defines a con-

currency model, based on tasks and events, and detects data races
at compile time.
data races (e.g. the Therac-25 [27]). One of the primary benefits of A few basic principles underlie nesC’s design:
nesC is helping the programmer use concurrency safely by ensuringnesc is an extension of CC [23] produces efficient code for all
the absence of (most) data races. This is discussed in Section 3.3. the target microcontrollers that are likely to be used in sensor net-

. . works. C provides all the low-level features necessary for accessing
2.2 Surge: A Sensor Network Application hardware, and interaction with existing C code is simplified. Last

A common application of sensor networks is to periodically sam- but not least, many programmers are familiar with C.

p|e a sensor (e_g_’ |ight or temperature) and report readings toa C does have significant disadvantages: it provides little help in
base station, which is typically a node with a wired network con- Writing safe code or in structuring applications. nesC addresses
nection and power source. As a running example throughout this safety through reduced expressive power and structure through com-
paper, we preseriurge a simple application that performs peri- ponents. None of the new features in nesC are tied to C: the same
odic sensor sampling and uses ad-hoc multi-hop routing over the ideas could be added to other imperative programming languages
wireless network to deliver samples to the base station. Surge issuch as Modula-2 [52].

intentionally simple and does not perform advanced functions such \whole-program analysis: nesC programs are subject to whole

as in-network data aggregation [19, 29]. . program analysis (for safety) and optimization (for performance).
Surge motes organize themselves into a spanning tree rooted afrherefore we do not consider separate compilation in nesC's de-
the base station. Each mote maintains the addressdrientand sign. The limited code space on motes makes this approach tractable.

its depthin the tree, advertising its depth in each radio message (ei- e ” . .
ther sensor sample or forwarded message) that it transmits. A node€SC IS @ "static language”: There is no dynamic memory allo-
selects an initial parent by listening to messages and choosing thet@tion and the call-graph is fully known at compile-time. These
node with the smallest depth; to seed the creation of the spanning.res'[r'cno.ns make whole program analysis and optimization signif-
tree, the base station periodically broadcasts beacon messages wit antly S”_“p'e’ a'_‘d more acy:curate. They sound more onerous t_han
depth 0. Nodes estimate parent link quality; when the link quality t ey aré in p_ra_ctlce: nesC’s component m°‘?'e' and parameter!zed
falls below some threshold, nodes select a new parent from their INtérfaces eliminate many needs for dynamic memory allocation
neighbor set based on link quality estimates and depth. aqd d_ynamlc dispatch. We ha_ve, so far, |mplement_ed_ one opti-
Once a second, each mote samples its light sensor and sends thization and one analysis: a simple whole-program inliner and a
sample to its parent. Parents acknowledge received packets. Surgdata-race detector. Details are given in Section 4.
uses the acknowledgments to provide a reliable transport layer; par-nesC supports and reflects TinyOS’s desigmesC is based around
ent link quality is calculated as the fraction of transmitted messages the concept of components, and directly supports TinyOS'’s event-
that are acknowledged. When a node receives a message from anbased concurrency model. Additionally, nesC explicitly addresses
other node, it forwards the message to its parent. Sensor sampleshe issue of concurrent access to shared data (Section 3.3).
are collected at the base station where they can be analyzed or vi- .p .
sualized. 3.1 Component Specification
Figure 1 shows the components of Surge and the interfaces by nesC applications are built by writing and assembidognpo-
which they are wired. This example shows several important ad- nents A componenprovidesandusesinterfaces. These interfaces
vantages of components. The Surge application only needs to in-are the only point of access to the component. An interface gen-
clude the parts of TinyOS that it needs, i.e., system boot code erally models some service (e.g., sending a message) and is speci-
(Main ), the timer {imer ), a sensorKhoto ), access to the LEDs  fied by aninterface type Figure 2 shows th&merM component,
(Leds ), and multi-hop message routingditihop ). Secondly, the part of the TinyOS timer service, that provides tsteControl
application code — th6urge component — explicitly specifies its  andTimer interfaces and usesGock interface (all shown in Fig-
environmental dependencies in terms of interfasegge requires ure 3).TimerM provides the logic that maps from a hardware clock
a timer (Timer interface), sensolpCinterface), LEDs I(eds in- (Clock ) into TinyOS’s timer abstractior(mer ).



interface StdControl { module SurgeM {

command result_t init(); provides interface StdControl;
} uses interface ADC;
uses interface Timer;
interface Timer { uses interface Send;
command result_t start(char type, uint32_t interval);
command result_t stop(); implementation {
event result_t fired(); uintl6_t sensorReading;

}

command result_t StdControl.init() {

interface Clock { return call Timer.start(TIMER_REPEAT, 1000);
command result_t setRate(char interval, char scale); }
event result_t fire();
} event result_t Timer.fired() {
call ADC.getData();
interface Send { return SUCCESS;
command result_t send(TOS_Msg *msg, uintl6_t length); }
event result_t sendDone(TOS_Msg *msg, result_t success);
} event result_t ADC.dataReady(uintl6_t data) {
sensorReading = data;
interface ADC { ... send message with data in it ...
command result_t getData(); return SUCCESS;
event result_t dataReady(uintl6_t data); }

}

Figure 3: Some interface types. ) S
Figure 4: Simplified excerpt frorBurgeM.

Interfaces in nesC atgdirectionat they contaircommandsind vy VVA
events Acommand is a function that is implemented by the providers StdControl | Timer configuration TimerC {
of an interface, an event is a function that is implemented by its R prg\,ides {

interface StdControl;
interface Timer;

}

implementation {
components TimerM, HWClock;

users. For instance, th@mer interface (Figure 3) definesart
andstop commands and &red event. In Figure 2 provided
interfaces are shown above thienerM component and used inter-
faces are below; downward-pointing arrows depict commands and
upward-pointing arrows depict events. Although this same inter-
action between the timer and its client could have been provided StdControl = TimerM.StdControl:
via two separate interfaces (one foart andstop , and one for Timer = TimerM.Timer;
fired ), grouping these commands and events in the same interface ]
makes the specification much clearer and helps prevent bugs whe TimerM.Clk -> HWClock.Clock;
wiring components together. Split-phase operations are cleanly
modeled by placing the command request and event response ir
the same interface. Figure 3 shows two examples of thisSehe
interface has theend command andendDone event of the split-
phased packet send (Section 2.1). HmCinterface is similarly
used to model split-phase sensor value reads. The body of a module is written in C-like code, with straightfor-
The separation of interface type definitions from their use in ward extensions. A command or evehin an interface is named
components promotes the definition of standard interfaces, making;. . A commandcall is like a regular function call prefixed with
components more reusable and flexible. A component can providethe keywordcall , similarly an evensignal s like a function
and use the same interface type (e.g., when interposing a compo-all prefixed bysignal . The definition of a commands or event
nent between a client and service), or provide the same interfacenamed;. f is prefixed withcommand or event . We require these

TimerC

Figure 5: TinyOS’s timer service: th&merC configuration.

multiple times. In these cases, the component must giveistah annotations to improve code clarity. Figure 4 is a simplified excerpt
face instance separate name using tae notation shown foClk from SurgeM, which is part of the Surge application. It defines the
in Figure 2. StdControl.init command, called at boot-time, and two of the

Components are also a clean way to abstract the hardware/softwaggents handled by Surge: the firing of the tim@inr.fired )
boundary. For instance, on one sensor board, the temperature senand sensor data acquisitioAl{C.dataReady ). The code calls the

sor (accessed via a component namedp) is mostly in hardware;  Timerstat ~ command to setup periodic timer events and the
Tempis a thin layer of software accessing on-chip hardware regis- Abc.getbata command to request a new sensor sample. Modules
ters. On another it is accessed over & bus;Tempis a compo- have private state, in this example B#nsorReading  variable.
nentimplemented as a number of interacting components including  TimercC , the TinyOS timer service, is implemented as a configu-
a generic 1C access component. ration, shown in Figure 5TimerC is built by wiring the two sub-
. components given by themponents declaration:TimerM (from

3.2 Component Implementation Figure 2) ancdHWClock (access to the on-chip clock). It maps its

There are two types of components in nest@dulesaandconfig- StdControl  andTimer interfaces to those dfimerM (StdCon-

urations Modules provide application code, implementing one or trol =TimerM.StdControl ~ , Timer = TimerM.Timer ) and con-
more interfaces. Configurations are used to wire other componentsnects the hardware clock interface usedTayierM to that pro-
together, connecting interfaces used by components to interfacesvided byHWClock (TimerM.Clk -> HWClock.Clock ). Figure 6
provided by others. Every nesC application is described topa shows a more elaborate example: the toplevel configuration for the
level configuratiorthat wires together the components used. Surge application.



Surgec 3.3 Concurrency and Atomicity
/% Data races occur due to concurrent updates to shared state. In or-
[Main SurgeM der to prevent them, a compiler must 1) understand the concurrency
\sm,mm. \ ADC | Timer | SendMsg | Leds model, and 2) determine the target of every update. In this section
we present the concurrency model and the key invariant that the
compiler must enforce to avoid data races. We achieve tractable
target analysis by reducing the expressive power of the language
v and performing alias analysis. In particular, nesC has no dynamic
StdControl ‘ADC ‘S(dComrol Timer StdControl SendMsg Leds . . .
Photo [Timerc Multihop LedsC memory allocation and no _functlon pointers. _
In TinyOS, code runs either asynchronously in response to an

interrupt, or in a synchronously scheduled task. To facilitate the
detection of race conditions, we distinguish synchronous and asyn-
Figure 6: TheSurgeC configuration: A top-level configuration. chronous code:

Asynchronous Code (AC):code that is reachable from

An interface of a component may be wired zero, one or more -
at least one interrupt handler.

times. As a result, an arbitrary number of command call expres-

sions may be wired to a single command implementation (“fan- Synchronous Code (SC)code that is only reachable

in”), and a single command call expression may be connected to an from tasks.

arbitrary number of command implementations (“fan-out”). For in-

stance, Figure 6 shows that callsstaControl.init in Main are The run-to-completion rule and sequential execution of tasks lead
connected to four different implementations @orgeM, Photo , immediately to a key invariant:

TimerC andMultihop ). nesC allows a fan-out degree of zero (no . ) o

wires) if the module implementer provides a “default” implemen- Invariant: Synchronous Code is atomic with respect to

tation for the unwired command. Fan-out degrees greater than one other Synchronous Code.

are allowed as long as the return type of the command is associated
with a function for combining the results of all the calls. In the case
of StdControl.init , the result typeesult _t (Figure 3) repre-
sents success or failure. Its combining function provides logical-
and-like behavior, thus the result of the calldwiControl.init

in Main is success if all four implementations succeed. The analo-

gous situations for event signal expressions is handled identically. Although non-preemption allows us to avoid races amongst tasks,

The explicit wiring_ of components viainterfaces, combined With o0 are il potential races between SC and AC, as well as AC and
the removal of function pointer typksmakes the control-flow be- AC. We claim that: '

tween components explicit. Module variables are private and,, as
a design style in TinyOS, we discourage sharing of data amongst
components. Taken together, this makes it much easier to write
correct components and understand their behavior when wired in
an application. Claim 2: Any update to shared state from SC that is

Most components in TinyOS represent services (such as the timer) also updated from AC is a potential race condition.
or pieces of hardware (such as the LEDs) and therefore exist only in
a single instance. However, it is sometimes useful to create several To reinstate atomicity in these cases, the programmer has two
instances of a component. In nesC, this is achieved by declaringoptions: either to convert all of the sharing code to tasks (SC only),
an abstract componentith optional parameters; abstract compo-  or to useatomic sectionso update the shared state. An atomic sec-
nents are created at compile-time in configurations. For instance,tion is a small code sequence that nesC ensures will run atomically.
the QueuedSend component used by the multi-hop communica- We present the syntax and implementation issues for atomic sec-
tion layerMultihop  (Figure 1) is an abstract component that takes  tions in Section 3.4. We require that any update to shared state that
a maximum retransmit count parameter: is a potential race condition based on the claims above, must occur
within an atomic section. This gives us our basic invariant:

By “atomic,” we mean that any shared state between the two
will by updated atomically. This essentially provides atomicity by
default for tasks. Code that includes split-phase operations, which
by definition must include (at least) two tasks, is not atomic as a
whole, although each half is atomic. We discuss larger units of
atomicity in Section 6.

Claim 1: Any update to shared state from AC is a po-
tential race condition.

abstract module QueuedSend(int maxAttempts) { ... }

configuration Multinop { Race-Free Invariant Any update to shared state is ei-
provides interface Send; ther not a potential race condition (SC only), or occurs

implementation { within an atomic section.
components MultihopM, QueuedSend(10) as newQueue, ... ; o ) o . _
In nesC, we enforce this invariant at compile time, which avoids

Send = MultihopM.Send, most race conditions. Note that this invariant only guarantees that

MultihopM.QueuedSendMsg -> newQueue.Send; Lo L . R

individual accesses are race-free; incorrect use of atomic sections
} can still lead to race conditions.

3.4 Concurrency in nesC

Concurrency is central to nesC components: events (and com-
mands) may be signaled directly or indirectly by an interrupt, which
At this point our implementation issues a warning when function makes them asynchronous code. To handle this concurrency, nesC
pointers are used. provides two tools: atomic sections and tasks. Figure 7 illustrates




module SurgeM { .. } module GenericComm { // id is the Active Message ID

implementation { provides interface Send[uint8_t id];
bool busy; provides interface Receive[uint8_t id];
norace uintl6_t sensorReading; } implementation {
TOS_Msg *msg;
event result_t Timer.fired() {
bool localBusy; command result_t
atomic  { Send.send[uint8_t id](uint8_t length, TOS_Msg *data)
localBusy = busy; { data->amld = id; msg = data; ... }
busy = TRUE;
} void sendComplete(TOS_Msg *packet) {
if (!localBusy) signal Send.sendDone[msg->amld](msg, SUCCESS);
call ADC.getData(); }

return SUCCESS;
}

task void sendData() { Il send sensorReading configuration Multihop { ... }
adcPacket.data = sensorReading; implementation {
call Send.send(&adcPacket, sizeof adcPacket.data); components QueuedSend(10) as newQueue, GenericComm,
return SUCCESS;
} newQueue.RealSend -> GenericComm.Send[42];
}
event result_t ADC.dataReady(uint16_t data) {

sensorReading = data;
post sendData();

return SUCCESS; Figure 8: Active Messages using Parameterized Interfaces.
}
y Section 4.2 shows that we can effectively detect a large number of
data races.

Figure 7: Concurrency and atomicity iSurgeM. Changes from 3.5 Parameterized Interfaces
Figure 4 are highlighted. Parameterized interfaces are nesC’s mechanism for introducing
runtime command and event dispatch within a first order language.

their use, showing the core logic of the Surge application. Here, A component declares an interface with a parameter list which cre-
Timer fired andADC.dataReady are asynchronous code. ates a separate interface for each tuple of parameter values. Pa-
TheTimerfired  event s signaled periodically. If Surge is not fameterized interfaces are used to model Active Messages [47] in
already busyADC.getData is called to get a new sensor value. As TinyOS: m.Actlve. Messages, packets contain a numeric |d§nt|f|er
busy is accessed in asynchronous code, its use is protected by arfhat specifies which event handler should be executed. Figure 8
atomic  statement that performs a test-and-sebasy . When the shows a very simplified definition of the communication compo-
sensor value is available, thC.dataReady event is signaled. ~ Ne€nt GenericComm). Wires to a parameterized interface must
Sending the message with the sensor reading is not a time-criticalSPECIfy @ specific interface with a compile-time constant: the multi-
operation, and the TinyOS communication layer is not designed to NOP message routing uses Active Message 42 for all its communi-
be executed as asynchronous code. ThereforgeM posts atask, ~ Cation, hence wires tGenericComm.Send[42]  in Figure 8.
sendData , which sends the sensor reading message. Posted tasks !N @module, the implemented commands and events of a param-
are executed by the TinyOS scheduler when the processor is idle. gterlzed interface receive extra parameters specifying the _selected
We currently implemenatomic by disabling and enabling in-  interface (se€end.send in theActiveMessages ~ module of Fig-
terrupts, which has very low overhead (a few cycles). However, U'e 8) .and select a speuflp interface when invoking a cqmmand or
leaving interrupts disabled for a long period delays interrupt han- €ventin & parameterized interface (seedComplete ). This last
dling, which makes the system less responsive. To minimize this construction translates into a runtime dispatch to one of the func-
effect, atomic statements are not allowed to call commands or sig- fions connected t@end.sendDone by the application’s configu--
nal events, either directly or in a called function. This confines the "ations. However the set of possible dispatch targets is explicitly
code executed by atomic  statement to a single module, making specified by the program’s configurations. An additional benefit is
it possible for the module implementer to bound atomic statement that no RAM is needed to store the active message dispatch table.

execution time.
As discussed in Section 3.8&omic prevents concurrent access 4., EVALUATION
to the shared data accessed in the statement. Given atomic sections

> - - ' In this section we evaluate nesC’s component model, concur-
we define the key rule that enforces our race-free invariant:

rency model, and whole-program inlining with respect to a set of
representative TinyOS applications, including Surge, TinyDB and
Mate. We have implemented a compiler for nesC that generates a
single C source file for a whole application, resolving all interface
The compiler reveals the specific conflict in addition to signaling connections to direct function calls. In the results below, this C file
the error. To remove the error, the programmer must either add anis compiled with gcc 3.1.1 for the Atmel ATmega 103, an 8-bit
atomic section, or move the offending code into a task. RISC microprocessor used on Mica mote (Table 1).

There are some cases in which there tentialrace condition
on a variable that the programmer knows is not an actual race con-4-1 Component Model
dition, for instancesensorReading in Figure 7. The declaration Anecdotally, nesC’s component model has been invaluable for
of sensorReading  includes thenorace qualifier to suppress er-  event-driven sensor applications. The success of the component
rors about this particular false positive. This avoids uselessly pro- model is shown by the way in which components are used in the
tecting all accesses &ensorReading  with atomic  statements. TinyOS code. The core TinyOS source consists of 186 components,

If a variablex is accessed by AC, then any access of
outside of an atomic statement is a compile-time error.



Component Type Data-race variables /* Contains a race: */ /* Fixed version: */

RandomLESR System 1 if (state == IDLE) { uint8_t oldState;

UARTM System 1 state = SENDING; atomic {

AMStandard System 2 count++; oldState = state;

AMPromiscious System 2 /I send a packet if (state == IDLE) {

BAPBaseM Application 2 } state = SENDING;

ChirpM Application 2 }

MicaHighSpeedRadioM System 2 }

TestTimerM Application 2 if (oldState == IDLE) {

ChannelMonC System 3 count++;

NoCrcPacket System 3 /I send a packet

OscilloscopeM Application 3 }

QueuedSend System 3

SurgeM Application 3

?thsfe"'n?gﬂo"ogm ﬁsg::ggggg g Figure 10: Fixing a race condition in a state transition.
MultihopM System 10

eepromM System 17 - . . . .

TinyAlloc System 18 The finite state machine style of decomposition in TinyOS led to
IdentC Application 23 the most common form of bug, a non-atomic state transition. State
Total 103 transitions are typically implemented using a read-modify-write of

the state variable, which must be atomic. A canonical example of
this race is shown in Figure 10, along with the fix.

The original versions of the communicatiofinyAlloc  and
EEPROM components contained large numbers of variable accesses
of which 121 are code modules and 65 are configurations. The in asynchronous code. Rather than using large atomic sections,
number of modules per application ranges from 20 to 69, with an which might decrease overall responsiveness, we promoted many
average of 35. Modules are generally quite small — on average of the offending functions to synchronous code, by posting a few
only 144 lines of code. This small size indicates the expressive additional tasks.
power of nesC’s components, as programmers have not needed to False positives fell into three major categories: state-based guards,
break the model by producing large monolithic components, which buffer swaps, and causal relationships. The first class, state-based
are more difficult to analyze and more error prone. guards, occurred when access to a module variable is serialized at

nesC's bidirectional interfaces are an excellent fit for event-driven run time by a state variable. The above state transition example il-
systems, since they provide a clean syntax for grouping related lustrates this; in this function, the varialdeunt is safe due to the
computation in the presence of split-phase and asynchronous op-monitor created bygtate
erations. As evidence of this, bidirectional interfaces are pervasive TinyOS’s communication primitives use a buffer-swapping pol-
in TinyOS: of the 186 components in the TinyOS core, 68% utilize icy for memory management. When a network packet is received,

Figure 9: Component locations of race condition variables.

at least one bidirectional interface. the radio component passes a buffer to the application; the applica-
tion returns a separate buffer to the component for the next receive
4.2 Concurrency event. This raises problems with alias analysis; although only one

nesC’s component model makes it simple to express the complex¢omponent has a reference to a given buffer at any time, compo-
concurrent actions in sensor network applications. Our sample ap-Nnents swap them back and forth. Although alias analysis would
plications each have an average Of 17 tasks and 75 even’[S, eacﬁonclude that bOth Components C0u|d Concurrently read and Wl’ite
of which represents a potentially concurrent activity. Moreover, in the same buffer, swapping ensures that only one component has
our Samp|e app"cations an average of 43% of the Code (measure(ﬁ reference to it at any time. To reSOIVe th|s ISsue, we annotated
in bytes) is reachable from an interrupt context, demonstrating a message buffers with therace qualifier.
high degree of concurrency. The last class of false positives, causal relationships, comes from
Our implementation of race detection uses a simple type-basedthe split-phase operation of TinyOS components. The command/event
alias analysis to detect which variables are accessed by asynchronoBdir of a split-phase operation might share a variable, but their
code. We report errors if any of these variables are accessed outsidéausal relationship means that the event will not fire while the com-
atomic sections. mand is executing. The event could fire during the command only
Initially, nesC included neither an explicitomic statementnor  if another TinyOS component accessed the underlying hardware;
the analysis to detect potential race conditions; TinyOS and its ap- @lthough this would violate the TinyOS programming model, nesC
plications had many data races. Once race detection was imple-does not enforce this limitation.
mented, we analyzed every application in the TinyOS source tree, .. .
finding 156 variables that potentially had a race condition. Of these, 4.3 Optlmlzatlon
53 were false positives (discussed below) and 103 were genuine As with data-race detection, nesC exploits the restrictions of
race conditions, a frequency of about six per thousand code state-the component model to perform static analysis and optimization.
ments. We fixed each of these bugs by moving code into tasks or The nesC compiler uses the application call-graph to eliminate un-
by usingatomic statements. We tested each TinyOS application reachable code and to inline small functions. These optimizations
and verified that the presence of atomic sections has not interferedgreatly reduce memory footprint, a key savings for embedded sys-
with correct operation. tems. Figure 11 shows a breakdown of the code and data size for
Figure 9 shows the locations of data races in the TinyOS tree. each component in the Surge application. TieyOS row repre-
Half of the races existed in system-level components used by manysents the core TinyOS initialization code and task scheduler, which
applications, while the other half were application-specifili- fits into 396 bytes.C Runtime represents necessary runtime rou-
tihopM , eepromM, andTinyAlloc  had a disproportionate number tines, including floating-point libraries (currently used by multi-
of races due to the amount of internal state they maintain through hop routing). Dead code elimination trimmed off an initial 9% of
complex concurrent operations. the Surge program code, and inlining yielded an additional 16%



Component [ Code size [ Data size ; ; ; ;- ;
(Sizes in bytes) [ Thiied | honinined | La}[ggﬁages in which one would implement, e.g., a multi-hop radio
Runtime :
TinyOS 364 666 32 The VHDL [18] hardware description language is based on as-
y
g Rtlll\';l“me 1152 11;522 13 sembling components (“architecture”) with well-defined interfaces.
ealMain - - e ’ . .
Application COMPOREnts Architectures are oft.en specified as independent processes; archi-
SurgeM [ 80 ] 740 ] V) tectures that are built out of components always encapsulate the
Multi-hop communicafion inner components. In contrast, nesC configurations do not encap-
AMPromiscuous 456 654 9 sulate the components they use, and concurrency crosses compo-
MultihopM 2646 2884 223 ) .
NoCRCPacket 370 484 50 nent boundaries. VHDL's model matches that of actual hardware,
QueuedSend 786 852 461 while nesC'’s is inspired by hardware. Another language targeted
Radio stack to generating hardware is SAFL [38], a first-order functional lan-
ChannelMlonC 404 o 0 guage. To allow hardware generation, SAFL has no recursion and
MicaHigh RadioM 1162 12 1 static data allocation.
caHighSpeedRadio 6 50 6 ) ]
PotM 50 82 1 Distributed systems [14, 21, 34, 40, 41, 45] and software engi-
gzgggégnc%%mg 622 623 g neering [2] often model systems as interacting sets of components.
SpiByteFifoC 344 438 2 These components are specified by the interfaces they provide or
Sensor acquisition use. However, the focus is very different from nesC: components
ADCM 156 260 2 are large-scale (e.g., a database), dynamically loaded and/or linked,
PhotoTempM 248 360 2 .
NiSColAnGoUs and possibly accessed remotely.
NoLeds - 18 ) ArchJava [1] has bidirectional interfacgsofts). There are no
RandomLFSR 134 134 6 interface types (port connections match methods by name and sig-
H;dmvj;“r’é E— 1826 1734 118 nature), fan-out is limited to methods with no result, and dispatch of
HPLADCpC 514 568 T port methods is dynamic. C# [32] and BCOOPL [5] support events
HPLClock 74 134 0 in classes and interfaces. However the two directions are asym-
HPLInit - 10 0 metric: registration of an event handler with an event producer is
HPLInterrupt - 22 0 dynamic
HPLPotC - 66 0 Yy '
HPLSlavePinC - 28 0 The languages above, and languages commonly used for pro-
HPLUARTM 160 212 0 gramming embedded systems (such as C, Ada, Forth), do not offer
gf;\f;mM 80 igi i the set of features desired in nesC: an interrupt-based concurrency
UARTM 78 136 1 model, low-level hardware access, component-based programming
Totals 11538 13714 1050 and static concurrency checking.

A number of operating systems have explored the use of com-
ponent architectures. The Flux OSKit [10] is a collection of com-
Figure 11: Breakdown of code and data size by component for the ponents for building operating systems, but provided components
Surge application. A ‘- in theinlined column indicates that the  target workstation-like machines. Flux was subsequently reimple-
corresponding component was entirely inlined. mented with the help of Knit [43], a language for constructing and
linking components implemented in C. Knit's component model,
savings. Note that inlining increases code size slightly for only based on that of units [9], is similar to nesC in that components pro-
one component FimerM — but reduces or eliminates many oth-  vide and use interfaces and that new components can be assembled
ers, leading to an overall reduction in footprint. Inlining provides out of existing ones. Unlike nesC, Knit lacks bidirectional inter-
only a small performance increase (less than a 1% improvement infaces and data race detection. THINK [8] takes the Flux model one
CPU utilization for our sample applications) — our CPU intensive step further by allowing explicit modeling of calls between com-
code (mostly low level parts of the radio stack) is not dominated by ponents. This allows clean linking of THINK components across

function calls. protection domains or networks. THINK does not employ whole-
program optimization and relies on dynamic dispatch. We do not
5. RELATED WORK believe this model, with its associated runtime cost, is appropri-

The module systems of languages such as Modula-2 (plus Ole_ate for network embedded systems. Other component-oriented sys-

scendants) [12, 52, 53] and Ada [20] explicitly import and export tems include Click [36], Scout [37], and thekernel [17]. These

interfaces. However these systems are less flexible than nesC, adystems are m.ore.spemallzed than nesC anq (.jo not support whole-
there is no explicit binding of interfaces: an exported interface program optimization (apart from several optimizations in Click [24])

is automatically linked to all importers df. Standard ML's mod- Or'F:gljrﬁicotgoar;a;lelglt-?i:;agz‘zd embedded operating svstems. such as
ule system offers similar functionality to nesC, except that circular i perating sy >
N " . VxWorks [51], QNX [42], and WInCE [33], differ from TinyOS
component” gtructure ) assemblies cannot be expressed. The .
nesC module system is very close to Mesa’s [35], and (coinciden- n a numper of respects. 'I_'hes_e systems are generally m_uch larger
tally) uses essentially the same terminologyodulescontain ex- and provide greater functionality than TinyOS, and are intended

) . . . for larger-scale embedded systems. We refer the reader to [16] for
ecutable codegonfigurationsconnect components (configurations

or modules) by binding their interfaces, whasterface typesnust a thorough discussion of the differences petween _these systems. .
match. There have been a few attempts at static detection of race condi-

Giotto [13], Esterel [4], Lustre [11], Signal [3] and E-FRP [48] tions. ESC [7] is in between a type checker and a program verifier;

are languages that target embedded, hard real-time, control sys-'t has been used to verify user-supplied associations between locks

tems. They explicity model the concept of (input) events and and variables, and also to enforce ordering constraints on lock ac-

(output) control signals, and offer much stronger time guarantees quisition. Sun’s LockLint [46] statically checks for inconsistent
than nesC. However tF]ey are not general purpose programminguse of locks or lock ordering. As expected, these tools have trouble



with first-class functions and aliasing, and tend to report a subset of tions from yielding the processor. This is not an issue for nesC.
the errors with false positives as well. They also focus on locking Language enhancements

rather than atomicity; we chose the latter to enable more freedom . .
of implementation, which is particularly important for interrupts. ~ There are a number of idioms common in TinyOS that are not

The next section covers the use of monitors in Mesa. well expressed in nesC. Multi-client services with per-client state

There are also tools for dynamic detection of races. Eraser [44] are not well-supported. For example, consider a general timer ser-
detects unprotected shared variables using a modified binary. “OnVice where each client wishes to receive timer events ata different
the fly” race detectors [31, 39] serialize all accesses to a variable to frequency. Abstract components can be used for this purpose, al-
verify serializability. These approaches only catch errors that actu- though they are currently limited in that the internal state of each
ally occur during the test run. In addition, dynamic approaches are instance is private to that instance. We currently use parameterized
less appealing for motes due to their number, resource limitations, interfaces to implement such multi-client services, where the pa-
and Ul constraints. All of these race detection systems, including r@meter corresponds to the “client number.” We are not wholly sat-
nesC, validate individual variable accesses. They cannot detect asfied with this approach, and we plan to investigate a better mech-

read-modify-write through a temporary variable in which the read anism in the future. o _
and write occur in distinct atomic sections. Split-phase operations provide high concurrency with low over-

head, but are difficult to program; reintroducing the convenience
of a threaded model would greatly simplify programming. By au-
6. DISCUSSION AND FUTURE WORK tomatically transforming blocking operations into split-phase calls,
The nesC language is well-suited to the unique challenges of pro-we could preserve expressive lightweight concurrency without forc-
gramming networked embedded systems. nesC was originally de-ing the programmer to manually build continuations within compo-
signed to express the concepts embodied in TinyOS, and by reim-nents (as they do now). As it stands, many components are writ-
plementing the operating system in nesC, those concepts were reten as small finite state machines; atomic state transitions result in
fined. nesC’s component model supports holistic system design byreplicated control flow, separating state transitions from their cor-
making it easy to assemble applications that include only the nec- responding actions. A future direction for nesC is to provide ex-
essary OS support. The component model also allows alternate im-plicit support for FSM-style decomposition that simplifies compo-
plementations and a flexible hardware/software boundary. nesC'snent design and allows properties of FSM behavior to be statically
concurrency model allows us to write highly concurrent programs verified.
on a platform with very limited resources; the use of bidirectional
interfaces and atomic statements permit a tight integration of con-
currency and component-oriented design. Careful restrictions on We believe that nesC is not limited to the domain of embedded
the programming model, including the lack of dynamic allocation Systems. nesC’s component-oriented structure, focus on concur-
and explicit specification of an application’s call-graph, facilitate rency, and bidirectional interfaces are valuable concepts in pro-
whole-program analyses and optimizations. Aggressive inlining re- gramming larger systems, such as enterprise-class applications and
duces memory footprint, and static data-race detection allows the Internet services. To effectively support this broader class of ap-
developer to identify and fix concurrency bugs. plications, several extensions to nesC are needed. First, nesC’s
The nesC design opens up several key areas for future work. compile-time analyses would need to be extended to handle dy-
These broadly fall into the areas of concurrency support, enhance-namic memory and component allocation, as well as patterns such

ments to language features, and application to domains other thar2s message buffer swap. The static checking of software proto-
networked embedded systems. cols in Vault [6] may provide an approach to solving these prob-

lems. nesC'’s concurrency model should be extended to admit mul-

tiprocessors, blocking operations, and a more general notion of
The nesC concurrency model provides short atomic actions, whichhreads, as discussed above. Such an approach would lead to a rich

can be used to build higher-level synchronization mechanisms suchset of concurrency primitives specifically tailored for component-

as semaphores, condition variables, atomic queues, and locks. Somsriented programming of large-scale systems.

of these mechanisms imply blocking, but there is nothing in the lan-

guageper sethat prevents support for blocking: we would need to

prohibit blocking calls in atomic sections as well as treat blocking REFERENCES
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