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Abstract

We presentnesC, a programming language for networked embed-
ded systems, such as sensor network “motes,” which represent a
new design space for application developers. Sensor networks con-
sist of (potentially) thousands of tiny, low-power “motes,” each of
which execute concurrent, reactive programs that must operate with
severe memory and power constraints.

nesC’s contribution is to support the special needs of this domain
by exposing a programming model that incorporates event-driven
execution, a flexible concurrency model, and component-oriented
application design. Restrictions on the programming model al-
low the nesC compiler to perform whole-program analyses, includ-
ing data-race detection (which improves reliability) and aggressive
function inlining (which reduces resource consumption).

nesC has been used to implement TinyOS, a small operating sys-
tem for sensor networks, as well as several significant sensor appli-
cations. nesC and TinyOS have been adopted by a large number of
sensor network research groups, and our experience and evaluation
of the language shows that it is effective at supporting the com-
plex, concurrent programming style demanded by this new class of
deeply networked systems.

1. INTRODUCTION
Advances in networking and integration have enabled small, flex-

ible, low-cost nodes that interact with their environment through
sensors, actuators and communication. Single-chip systems are
now emerging that integrate a low-power CPU and memory, ra-
dio or optical communication, and substantial MEMs-based on-
chip sensors; these nodes are colloquially referred to as “motes”
or “smart dust” [49]. Target costs (for single-chip motes) are less
than 10 cents per unit, which enables networks with potentially
tens of thousands of motes. Target power consumption means that
motes can last years with low-bandwidth communication, or even
be battery-free when fueled by ambient power (e.g., heat from the
environment).

In this paper, we present nesC, a systems programming language
for networked embedded systems such as motes. nesC supports a
programming model that integrates reactivity to the environment,
concurrency, and communication. By performing whole-program
optimizations and compile-time data race detection, nesC simpli-
fies application development, reduces code size, and eliminates
many sources of potential bugs.

A key focus of nesC is holistic system design. Mote applications
are deeply tied to hardware, and each mote runs a single application
at a time. This approach yields three important properties. First, all
resources are known statically. Second, rather than employing a
general-purpose OS, applications are built from a suite of reusable
system components coupled with application-specific code. Third,

the hardware/software boundary varies depending on the applica-
tion and hardware platform; it is important to design for flexible
decomposition.

There are a number of unique challenges that nesC must address:

Driven by interaction with environment: Unlike traditional com-
puters, motes are used for data collection and control of the local
environment, rather than general-purpose computation. This focus
leads to two observations. First, motes are fundamentally event-
driven, reacting to changes in the environment (message arrival,
sensor acquisition) rather than driven by interactive or batch pro-
cessing. Second, event arrival and data processing are concurrent
activities, demanding an approach to concurrency management that
addresses potential bugs such as race conditions.

Limited resources: Motes have very limited physical resources,
due to the goals of small size, low cost, and low power consump-
tion. We do not expect new technology to remove these limitations:
the benefits of Moore’s Law will be applied to reduce size and
cost, rather than increase capability. Although our current motes
are measured in square centimeters, a version is in fabrication that
measures less than 5 mm2.

Reliability: Although we expect individual motes to fail due to
hardware issues, we must enable very long-lived applications. For
example, environmental monitoring applications need to collect data
without human interaction for months at a time. An important goal
is to reduce run-time errors, since there is no real recovery mecha-
nism in the field except for automatic reboot.

Soft real-time requirements: Although there are some tasks that
are time critical, such as radio management or sensor polling, we
do not focus on hard real-time guarantees. Our experience so far
indicates that timing constraints are easily met by having complete
control over the application and OS, as well as by limiting utiliza-
tion. One of the few timing-critical aspects in sensor networks is
radio communication; however, given the fundamental unreliabil-
ity of the radio link, it is not necessary to meet hard deadlines in
this domain.

Although nesC is a synthesis of many existing language concepts
targeted at the above problems, it provides three broad contribu-
tions. First, nesC defines a component model that supports event-
driven systems: the model provides bidirectional interfaces to sim-
plify event flow, supports a flexible hardware/software boundary,
and admits efficient implementation that avoids virtual functions
and dynamic component creation. Second, nesC defines a simple
but expressive concurrency model coupled with extensive compile-
time analysis: the nesC compiler detects most data races at compile
time. This combination allows applications to exhibit highly con-
current behavior with very limited resources. Third, nesC provides



Mote Type WeC rene2 rene2 dot mica

Date 9/99 10/00 6/01 8/01 2/02
Microcontroller
Type AT90LS8535 ATMega163 ATMega103
Prog. mem. (KB) 8 16 128
RAM (KB) 0.5 1 4
Default Power source
Size CR2450 2xAA CR2032 2xAA
Capacity (mAh) 575 2850 225 2850
Communication
Radio RFM TR1000
Rate (Kbps) 10 10 10 10 10/40
Modulation type OOK OOK/ASK

Table 1: The family of TinyOS motes.

a unique balance between accurate program analysis to improve re-
liability and reduce code size, and expressive power for building
real applications. In addition to static data race detection, the nesC
compiler performs static component instantiation, whole-program
inlining, and dead-code elimination. We prohibit many features
that hinder static analysis, including function pointers and dynamic
memory allocation, but are capable of supporting complex applica-
tions and a substantial user community.

nesC is used as the programming language for TinyOS [16], a
small operating system for sensor network applications that is in
use by more than 100 research groups worldwide. Several signifi-
cant sensor network applications have been implemented in nesC,
includingTinyDB [29], a sensor network query processing engine,
andMaté [28], a small virtual machine that allows rapid reprogram-
ming of sensor networks.

Section 2 presents background material on sensor networks and
introducesSurge, a sample nesC application used as a running ex-
ample throughout the paper. Section 3 presents the nesC design;
Section 4 summarizes our experience with nesC and evaluates the
effectiveness of data-race detection and inlining. We conclude with
a survey of related work (Section 5) and a discussion of nesC and
its future directions (Section 6).

2. BACKGROUND
Wireless sensor networks are composed of large numbers of tiny

resource-limited devices called “motes.” A first application of these
networks is data collection in uncontrolled environments, such as
nature reserves [30] or seismically threatened structures [25]. Four
key features have emerged in networks we have deployed: interac-
tion with the local environment though sensors, communication via
a wireless network, lifetime requirements of months to a year, and
physical inaccessibility.

Table 1 presents several generations of motes designed at UC Berke-
ley. Although very resource constrained, motes must be highly re-
active and participate in complex distributed algorithms, such as
data aggregation [19, 29] or spatial localization [50]. This com-
bination of requirements makes traditional operating systems and
programming models inappropriate for sensor networks. Mote hard-
ware evolves rapidly: Table 1 covers five platforms in three years,
with different sensors and varying levels of hardware support for
operations such as radio-based messaging. A sensor network op-
erating system and programming language must make it easy for
applications to adapt to these changes.

2.1 TinyOS
TinyOS [16] is an operating system specifically designed for net-

work embedded systems. TinyOS has a programming model tai-

lored for event-driven applications as well as a very small footprint
(the core OS requires 396 bytes of code and data memory, com-
bined). Two of our motivations in designing nesC were to sup-
port TinyOS’s programming model and to reimplement TinyOS in
the new language. TinyOS has several important features that in-
fluenced nesC’s design: a component-based architecture, a simple
event-based concurrency model, and split-phase operations.

Component-based architecture:TinyOS provides a set of reusable
systemcomponents. An application connects components using a
wiring specificationthat is independent of component implemen-
tations; each application customizes the set of components it uses.
Although most OS components are software modules, some are
thin wrappers around hardware; the distinction is invisible to the
developer. Decomposing different OS services into separate com-
ponents allows unused services to be excluded from the application.
We present nesC’s support for components in Sections 3.1 and 3.2.

Tasks and event based concurrency:There are two sources of
concurrency in TinyOS:tasksand events. Tasks are a deferred
computation mechanism. They run to completion and do not pre-
empt each other. Components canpost tasks; the post operation
immediately returns, deferring the computation until the scheduler
executes the task later. Components can use tasks when timing re-
quirements are not strict; this includes nearly all operations except
low-level communication. To ensure low task execution latency,
individual tasks must be short; lengthy operations should be spread
across multiple tasks. The lifetime requirements of sensor networks
prohibit heavy computation, keeping the system reactive.

Eventsalso run to completion, but may preempt the execution
of a task or another event. Events signify either completion of a
split-phase operation (discussed below) or an event from the envi-
ronment (e.g. message reception or time passing). TinyOS execu-
tion is ultimately driven by events representing hardware interrupts.
We discuss the refinement and inclusion of TinyOS’s concurrency
model into nesC in Sections 3.3 and 3.4.

Split-phase operations:Because tasks execute non-preemptively,
TinyOS has no blocking operations. All long-latency operations are
split-phase: operation request and completion are separate func-
tions. Commandsare typically requests to execute an operation.
If the operation is split-phase, the command returns immediately
and completion will be signaled with an event; non-split-phase op-
erations (e.g. toggle an LED) do not have completion events. A
typical example of a split-phase operation is a packet send: a com-
ponent may invoke thesend command to initiate the transmission
of a radio message, and the communication component signals the
sendDone event when transmission has completed. Each compo-
nent implements one half of the split-phase operation and calls the
other; the wiring connects both commands and events across com-
ponent boundaries. We discuss how nesC captures split-phase op-
erations in Section 3.1.

Resource contention is typically handled through explicit rejec-
tion of concurrent requests. In the example above, if the commu-
nication component cannot handle multiple concurrentsend op-
erations, it signals an error when a concurrentsend is attempted.
Alternately, the communication component may queue the request
for future processing.

The simple concurrency model of TinyOS allows high concur-
rency with low overhead, in contrast to a thread-based concurrency
model in which thread stacks consume precious memory while
blocking on a contended service. However, as in any concurrent
system, concurrency and non-determinism can be the source of
complex bugs, including deadlock (e.g. the Mars Rover [22]) and
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Figure 1: Simplified view of the Surge application. Nodes repre-
sent components, and edges represent interface wiring. Edges are
labeled with the corresponding interface name.

data races (e.g. the Therac-25 [27]). One of the primary benefits of
nesC is helping the programmer use concurrency safely by ensuring
the absence of (most) data races. This is discussed in Section 3.3.

2.2 Surge: A Sensor Network Application
A common application of sensor networks is to periodically sam-

ple a sensor (e.g., light or temperature) and report readings to a
base station, which is typically a node with a wired network con-
nection and power source. As a running example throughout this
paper, we presentSurge, a simple application that performs peri-
odic sensor sampling and uses ad-hoc multi-hop routing over the
wireless network to deliver samples to the base station. Surge is
intentionally simple and does not perform advanced functions such
as in-network data aggregation [19, 29].

Surge motes organize themselves into a spanning tree rooted at
the base station. Each mote maintains the address of itsparentand
its depthin the tree, advertising its depth in each radio message (ei-
ther sensor sample or forwarded message) that it transmits. A node
selects an initial parent by listening to messages and choosing the
node with the smallest depth; to seed the creation of the spanning
tree, the base station periodically broadcasts beacon messages with
depth 0. Nodes estimate parent link quality; when the link quality
falls below some threshold, nodes select a new parent from their
neighbor set based on link quality estimates and depth.

Once a second, each mote samples its light sensor and sends the
sample to its parent. Parents acknowledge received packets. Surge
uses the acknowledgments to provide a reliable transport layer; par-
ent link quality is calculated as the fraction of transmitted messages
that are acknowledged. When a node receives a message from an-
other node, it forwards the message to its parent. Sensor samples
are collected at the base station where they can be analyzed or vi-
sualized.

Figure 1 shows the components of Surge and the interfaces by
which they are wired. This example shows several important ad-
vantages of components. The Surge application only needs to in-
clude the parts of TinyOS that it needs, i.e., system boot code
(Main ), the timer (Timer ), a sensor (Photo ), access to the LEDs
(Leds ), and multi-hop message routing (Multihop ). Secondly, the
application code – theSurge component – explicitly specifies its
environmental dependencies in terms of interfaces.Surge requires
a timer (Timer interface), sensor (ADCinterface), LEDs (Leds in-

TimerM

StdControl Timer

HWClock

module TimerM {
provides {

interface StdControl;
interface Timer;

}
uses interface Clock as Clk;

} ...

Figure 2: Specification and graphical depiction of theTimerM
component.

terface), and communication (Send interface). The code is there-
fore independent of the particular sensor hardware used. For exam-
ple, ADCcould easily be wired to a temperature sensor rather than
a light sensor, as long as the two provide the same interface.

3. nesCDESIGN
In this section we discuss the primary concepts in nesC’s de-

sign. First, nesC applications are built out ofcomponentswith
well-defined, bidirectionalinterfaces. Second, nesC defines a con-
currency model, based on tasks and events, and detects data races
at compile time.

A few basic principles underlie nesC’s design:

nesC is an extension of C:C [23] produces efficient code for all
the target microcontrollers that are likely to be used in sensor net-
works. C provides all the low-level features necessary for accessing
hardware, and interaction with existing C code is simplified. Last
but not least, many programmers are familiar with C.

C does have significant disadvantages: it provides little help in
writing safe code or in structuring applications. nesC addresses
safety through reduced expressive power and structure through com-
ponents. None of the new features in nesC are tied to C: the same
ideas could be added to other imperative programming languages
such as Modula-2 [52].

Whole-program analysis: nesC programs are subject to whole
program analysis (for safety) and optimization (for performance).
Therefore we do not consider separate compilation in nesC’s de-
sign. The limited code space on motes makes this approach tractable.

nesC is a “static language”: There is no dynamic memory allo-
cation and the call-graph is fully known at compile-time. These
restrictions make whole program analysis and optimization signif-
icantly simpler and more accurate. They sound more onerous than
they are in practice: nesC’s component model and parameterized
interfaces eliminate many needs for dynamic memory allocation
and dynamic dispatch. We have, so far, implemented one opti-
mization and one analysis: a simple whole-program inliner and a
data-race detector. Details are given in Section 4.

nesC supports and reflects TinyOS’s design:nesC is based around
the concept of components, and directly supports TinyOS’s event-
based concurrency model. Additionally, nesC explicitly addresses
the issue of concurrent access to shared data (Section 3.3).

3.1 Component Specification
nesC applications are built by writing and assemblingcompo-

nents. A componentprovidesandusesinterfaces. These interfaces
are the only point of access to the component. An interface gen-
erally models some service (e.g., sending a message) and is speci-
fied by aninterface type. Figure 2 shows theTimerM component,
part of the TinyOS timer service, that provides theStdControl
andTimer interfaces and uses aClock interface (all shown in Fig-
ure 3).TimerM provides the logic that maps from a hardware clock
(Clock ) into TinyOS’s timer abstraction (Timer ).



interface StdControl {
command result_t init();

}

interface Timer {
command result_t start(char type, uint32_t interval);
command result_t stop();
event result_t fired();

}

interface Clock {
command result_t setRate(char interval, char scale);
event result_t fire();

}

interface Send {
command result_t send(TOS_Msg *msg, uint16_t length);
event result_t sendDone(TOS_Msg *msg, result_t success);

}

interface ADC {
command result_t getData();
event result_t dataReady(uint16_t data);

}

Figure 3: Some interface types.

Interfaces in nesC arebidirectional: they containcommandsand
events. A command is a function that is implemented by the providers
of an interface, an event is a function that is implemented by its
users. For instance, theTimer interface (Figure 3) definesstart
and stop commands and afired event. In Figure 2 provided
interfaces are shown above theTimerM component and used inter-
faces are below; downward-pointing arrows depict commands and
upward-pointing arrows depict events. Although this same inter-
action between the timer and its client could have been provided
via two separate interfaces (one forstart andstop , and one for
fired ), grouping these commands and events in the same interface
makes the specification much clearer and helps prevent bugs when
wiring components together. Split-phase operations are cleanly
modeled by placing the command request and event response in
the same interface. Figure 3 shows two examples of this. TheSend
interface has thesend command andsendDone event of the split-
phased packet send (Section 2.1). TheADC interface is similarly
used to model split-phase sensor value reads.

The separation of interface type definitions from their use in
components promotes the definition of standard interfaces, making
components more reusable and flexible. A component can provide
and use the same interface type (e.g., when interposing a compo-
nent between a client and service), or provide the same interface
multiple times. In these cases, the component must give eachinter-
face instancea separate name using theas notation shown forClk
in Figure 2.

Components are also a clean way to abstract the hardware/software
boundary. For instance, on one sensor board, the temperature sen-
sor (accessed via a component namedTemp) is mostly in hardware;
Temp is a thin layer of software accessing on-chip hardware regis-
ters. On another it is accessed over an I2C bus;Temp is a compo-
nent implemented as a number of interacting components including
a generic I2C access component.

3.2 Component Implementation
There are two types of components in nesC:modulesandconfig-

urations. Modules provide application code, implementing one or
more interfaces. Configurations are used to wire other components
together, connecting interfaces used by components to interfaces
provided by others. Every nesC application is described by atop-
level configurationthat wires together the components used.

module SurgeM {
provides interface StdControl;
uses interface ADC;
uses interface Timer;
uses interface Send;

}
implementation {

uint16_t sensorReading;

command result_t StdControl.init() {
return call Timer.start(TIMER_REPEAT, 1000);

}

event result_t Timer.fired() {
call ADC.getData();
return SUCCESS;

}

event result_t ADC.dataReady(uint16_t data) {
sensorReading = data;
... send message with data in it ...
return SUCCESS;

}
...

}

Figure 4: Simplified excerpt fromSurgeM .

HWClock

Clock

TimerC

TimerM

Clock

StdControl Timer

StdControl Timer
configuration TimerC {

provides {
interface StdControl;
interface Timer;

}
}
implementation {

components TimerM, HWClock;

StdControl = TimerM.StdControl;
Timer = TimerM.Timer;

TimerM.Clk -> HWClock.Clock;
}

Figure 5: TinyOS’s timer service: theTimerC configuration.

The body of a module is written in C-like code, with straightfor-
ward extensions. A command or eventf in an interfacei is named
i.f . A commandcall is like a regular function call prefixed with
the keywordcall , similarly an eventsignal is like a function
call prefixed bysignal . The definition of a commands or event
namedi.f is prefixed withcommand or event . We require these
annotations to improve code clarity. Figure 4 is a simplified excerpt
from SurgeM , which is part of the Surge application. It defines the
StdControl.init command, called at boot-time, and two of the
events handled by Surge: the firing of the timer (Timer.fired )
and sensor data acquisition (ADC.dataReady ). The code calls the
Timer.start command to setup periodic timer events and the
ADC.getData command to request a new sensor sample. Modules
have private state, in this example thesensorReading variable.

TimerC , the TinyOS timer service, is implemented as a configu-
ration, shown in Figure 5.TimerC is built by wiring the two sub-
components given by thecomponents declaration:TimerM (from
Figure 2) andHWClock (access to the on-chip clock). It maps its
StdControl andTimer interfaces to those ofTimerM (StdCon-
trol = TimerM.StdControl , Timer = TimerM.Timer ) and con-
nects the hardware clock interface used byTimerM to that pro-
vided byHWClock (TimerM.Clk -> HWClock.Clock ). Figure 6
shows a more elaborate example: the toplevel configuration for the
Surge application.
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An interface of a component may be wired zero, one or more
times. As a result, an arbitrary number of command call expres-
sions may be wired to a single command implementation (“fan-
in”), and a single command call expression may be connected to an
arbitrary number of command implementations (“fan-out”). For in-
stance, Figure 6 shows that calls toStdControl.init in Main are
connected to four different implementations (inSurgeM , Photo ,
TimerC andMultihop ). nesC allows a fan-out degree of zero (no
wires) if the module implementer provides a “default” implemen-
tation for the unwired command. Fan-out degrees greater than one
are allowed as long as the return type of the command is associated
with a function for combining the results of all the calls. In the case
of StdControl.init , the result typeresult t (Figure 3) repre-
sents success or failure. Its combining function provides logical-
and-like behavior, thus the result of the call toStdControl.init
in Main is success if all four implementations succeed. The analo-
gous situations for event signal expressions is handled identically.

The explicit wiring of components via interfaces, combined with
the removal of function pointer types1, makes the control-flow be-
tween components explicit. Module variables are private and,, as
a design style in TinyOS, we discourage sharing of data amongst
components. Taken together, this makes it much easier to write
correct components and understand their behavior when wired in
an application.

Most components in TinyOS represent services (such as the timer)
or pieces of hardware (such as the LEDs) and therefore exist only in
a single instance. However, it is sometimes useful to create several
instances of a component. In nesC, this is achieved by declaring
anabstract componentwith optional parameters; abstract compo-
nents are created at compile-time in configurations. For instance,
the QueuedSend component used by the multi-hop communica-
tion layerMultihop (Figure 1) is an abstract component that takes
a maximum retransmit count parameter:

abstract module QueuedSend(int maxAttempts) { ... }

configuration Multihop {
provides interface Send;

}
implementation {

components MultihopM, QueuedSend(10) as newQueue, ... ;

Send = MultihopM.Send;
MultihopM.QueuedSendMsg -> newQueue.Send;
...

}

1At this point our implementation issues a warning when function
pointers are used.

3.3 Concurrency and Atomicity
Data races occur due to concurrent updates to shared state. In or-

der to prevent them, a compiler must 1) understand the concurrency
model, and 2) determine the target of every update. In this section
we present the concurrency model and the key invariant that the
compiler must enforce to avoid data races. We achieve tractable
target analysis by reducing the expressive power of the language
and performing alias analysis. In particular, nesC has no dynamic
memory allocation and no function pointers.

In TinyOS, code runs either asynchronously in response to an
interrupt, or in a synchronously scheduled task. To facilitate the
detection of race conditions, we distinguish synchronous and asyn-
chronous code:

Asynchronous Code (AC):code that is reachable from
at least one interrupt handler.

Synchronous Code (SC):code that is only reachable
from tasks.

The run-to-completion rule and sequential execution of tasks lead
immediately to a key invariant:

Invariant: Synchronous Code is atomic with respect to
other Synchronous Code.

By “atomic,” we mean that any shared state between the two
will by updated atomically. This essentially provides atomicity by
default for tasks. Code that includes split-phase operations, which
by definition must include (at least) two tasks, is not atomic as a
whole, although each half is atomic. We discuss larger units of
atomicity in Section 6.

Although non-preemption allows us to avoid races amongst tasks,
there are still potential races between SC and AC, as well as AC and
AC. We claim that:

Claim 1: Any update to shared state from AC is a po-
tential race condition.

Claim 2: Any update to shared state from SC that is
also updated from AC is a potential race condition.

To reinstate atomicity in these cases, the programmer has two
options: either to convert all of the sharing code to tasks (SC only),
or to useatomic sectionsto update the shared state. An atomic sec-
tion is a small code sequence that nesC ensures will run atomically.
We present the syntax and implementation issues for atomic sec-
tions in Section 3.4. We require that any update to shared state that
is a potential race condition based on the claims above, must occur
within an atomic section. This gives us our basic invariant:

Race-Free Invariant: Any update to shared state is ei-
ther not a potential race condition (SC only), or occurs
within an atomic section.

In nesC, we enforce this invariant at compile time, which avoids
most race conditions. Note that this invariant only guarantees that
individual accesses are race-free; incorrect use of atomic sections
can still lead to race conditions.

3.4 Concurrency in nesC
Concurrency is central to nesC components: events (and com-

mands) may be signaled directly or indirectly by an interrupt, which
makes them asynchronous code. To handle this concurrency, nesC
provides two tools: atomic sections and tasks. Figure 7 illustrates



module SurgeM { ... }
implementation {

bool busy;
norace uint16_t sensorReading;

event result_t Timer.fired() {
bool localBusy;
atomic {

localBusy = busy;
busy = TRUE;

}
if (!localBusy)

call ADC.getData();
return SUCCESS;

}

task void sendData() { // send sensorReading
adcPacket.data = sensorReading;
call Send.send(&adcPacket, sizeof adcPacket.data);
return SUCCESS;

}

event result_t ADC.dataReady(uint16_t data) {
sensorReading = data;
post sendData();
return SUCCESS;

}
...

}

Figure 7: Concurrency and atomicity inSurgeM . Changes from
Figure 4 are highlighted.

their use, showing the core logic of the Surge application. Here,
Timer.fired andADC.dataReady are asynchronous code.

TheTimer.fired event is signaled periodically. If Surge is not
already busy,ADC.getData is called to get a new sensor value. As
busy is accessed in asynchronous code, its use is protected by an
atomic statement that performs a test-and-set onbusy . When the
sensor value is available, theADC.dataReady event is signaled.
Sending the message with the sensor reading is not a time-critical
operation, and the TinyOS communication layer is not designed to
be executed as asynchronous code. Therefore,SurgeM posts a task,
sendData , which sends the sensor reading message. Posted tasks
are executed by the TinyOS scheduler when the processor is idle.

We currently implementatomic by disabling and enabling in-
terrupts, which has very low overhead (a few cycles). However,
leaving interrupts disabled for a long period delays interrupt han-
dling, which makes the system less responsive. To minimize this
effect, atomic statements are not allowed to call commands or sig-
nal events, either directly or in a called function. This confines the
code executed by anatomic statement to a single module, making
it possible for the module implementer to bound atomic statement
execution time.

As discussed in Section 3.3,atomic prevents concurrent access
to the shared data accessed in the statement. Given atomic sections,
we define the key rule that enforces our race-free invariant:

If a variablex is accessed by AC, then any access ofx
outside of an atomic statement is a compile-time error.

The compiler reveals the specific conflict in addition to signaling
the error. To remove the error, the programmer must either add an
atomic section, or move the offending code into a task.

There are some cases in which there is apotentialrace condition
on a variable that the programmer knows is not an actual race con-
dition, for instancesensorReading in Figure 7. The declaration
of sensorReading includes thenorace qualifier to suppress er-
rors about this particular false positive. This avoids uselessly pro-
tecting all accesses tosensorReading with atomic statements.

module GenericComm { // id is the Active Message ID
provides interface Send[uint8_t id];
provides interface Receive[uint8_t id];

} implementation {
TOS_Msg *msg;

command result_t
Send.send[uint8_t id](uint8_t length, TOS_Msg *data)

{ data->amId = id; msg = data; ... }

void sendComplete(TOS_Msg *packet) {
signal Send.sendDone[msg->amId](msg, SUCCESS);

}
...

}

configuration Multihop { ... }
implementation {

components QueuedSend(10) as newQueue, GenericComm,
...
newQueue.RealSend -> GenericComm.Send[42];

}

Figure 8: Active Messages using Parameterized Interfaces.

Section 4.2 shows that we can effectively detect a large number of
data races.

3.5 Parameterized Interfaces
Parameterized interfaces are nesC’s mechanism for introducing

runtime command and event dispatch within a first order language.
A component declares an interface with a parameter list which cre-
ates a separate interface for each tuple of parameter values. Pa-
rameterized interfaces are used to model Active Messages [47] in
TinyOS: in Active Messages, packets contain a numeric identifier
that specifies which event handler should be executed. Figure 8
shows a very simplified definition of the communication compo-
nent (GenericComm ). Wires to a parameterized interface must
specify a specific interface with a compile-time constant: the multi-
hop message routing uses Active Message 42 for all its communi-
cation, hence wires toGenericComm.Send[42] in Figure 8.

In a module, the implemented commands and events of a param-
eterized interface receive extra parameters specifying the selected
interface (seeSend.send in theActiveMessages module of Fig-
ure 8) and select a specific interface when invoking a command or
event in a parameterized interface (seesendComplete ). This last
construction translates into a runtime dispatch to one of the func-
tions connected toSend.sendDone by the application’s configu-
rations. However the set of possible dispatch targets is explicitly
specified by the program’s configurations. An additional benefit is
that no RAM is needed to store the active message dispatch table.

4. EVALUATION
In this section we evaluate nesC’s component model, concur-

rency model, and whole-program inlining with respect to a set of
representative TinyOS applications, including Surge, TinyDB and
Maté. We have implemented a compiler for nesC that generates a
single C source file for a whole application, resolving all interface
connections to direct function calls. In the results below, this C file
is compiled with gcc 3.1.1 for the Atmel ATmega 103, an 8-bit
RISC microprocessor used on Mica mote (Table 1).

4.1 Component Model
Anecdotally, nesC’s component model has been invaluable for

event-driven sensor applications. The success of the component
model is shown by the way in which components are used in the
TinyOS code. The core TinyOS source consists of 186 components,



Component Type Data-race variables
RandomLFSR System 1
UARTM System 1
AMStandard System 2
AMPromiscious System 2
BAPBaseM Application 2
ChirpM Application 2
MicaHighSpeedRadioM System 2
TestTimerM Application 2
ChannelMonC System 3
NoCrcPacket System 3
OscilloscopeM Application 3
QueuedSend System 3
SurgeM Application 3
SenseLightToLogM Application 3
TestTemp Application 3
MultihopM System 10
eepromM System 17
TinyAlloc System 18
IdentC Application 23
Total 103

Figure 9: Component locations of race condition variables.

of which 121 are code modules and 65 are configurations. The
number of modules per application ranges from 20 to 69, with an
average of 35. Modules are generally quite small — on average
only 144 lines of code. This small size indicates the expressive
power of nesC’s components, as programmers have not needed to
break the model by producing large monolithic components, which
are more difficult to analyze and more error prone.

nesC’s bidirectional interfaces are an excellent fit for event-driven
systems, since they provide a clean syntax for grouping related
computation in the presence of split-phase and asynchronous op-
erations. As evidence of this, bidirectional interfaces are pervasive
in TinyOS: of the 186 components in the TinyOS core, 68% utilize
at least one bidirectional interface.

4.2 Concurrency
nesC’s component model makes it simple to express the complex

concurrent actions in sensor network applications. Our sample ap-
plications each have an average of 17 tasks and 75 events, each
of which represents a potentially concurrent activity. Moreover, in
our sample applications an average of 43% of the code (measured
in bytes) is reachable from an interrupt context, demonstrating a
high degree of concurrency.

Our implementation of race detection uses a simple type-based
alias analysis to detect which variables are accessed by asynchronous
code. We report errors if any of these variables are accessed outside
atomic sections.

Initially, nesC included neither an explicitatomic statement nor
the analysis to detect potential race conditions; TinyOS and its ap-
plications had many data races. Once race detection was imple-
mented, we analyzed every application in the TinyOS source tree,
finding 156 variables that potentially had a race condition. Of these,
53 were false positives (discussed below) and 103 were genuine
race conditions, a frequency of about six per thousand code state-
ments. We fixed each of these bugs by moving code into tasks or
by usingatomic statements. We tested each TinyOS application
and verified that the presence of atomic sections has not interfered
with correct operation.

Figure 9 shows the locations of data races in the TinyOS tree.
Half of the races existed in system-level components used by many
applications, while the other half were application-specific.Mul-
tihopM , eepromM, andTinyAlloc had a disproportionate number
of races due to the amount of internal state they maintain through
complex concurrent operations.

/* Contains a race: */ /* Fixed version: */
if (state == IDLE) { uint8_t oldState;

state = SENDING; atomic {
count++; oldState = state;
// send a packet if (state == IDLE) {

} state = SENDING;
}

}
if (oldState == IDLE) {

count++;
// send a packet

}

Figure 10: Fixing a race condition in a state transition.

The finite state machine style of decomposition in TinyOS led to
the most common form of bug, a non-atomic state transition. State
transitions are typically implemented using a read-modify-write of
the state variable, which must be atomic. A canonical example of
this race is shown in Figure 10, along with the fix.

The original versions of the communication,TinyAlloc and
EEPROM components contained large numbers of variable accesses
in asynchronous code. Rather than using large atomic sections,
which might decrease overall responsiveness, we promoted many
of the offending functions to synchronous code, by posting a few
additional tasks.

False positives fell into three major categories: state-based guards,
buffer swaps, and causal relationships. The first class, state-based
guards, occurred when access to a module variable is serialized at
run time by a state variable. The above state transition example il-
lustrates this; in this function, the variablecount is safe due to the
monitor created bystate .

TinyOS’s communication primitives use a buffer-swapping pol-
icy for memory management. When a network packet is received,
the radio component passes a buffer to the application; the applica-
tion returns a separate buffer to the component for the next receive
event. This raises problems with alias analysis; although only one
component has a reference to a given buffer at any time, compo-
nents swap them back and forth. Although alias analysis would
conclude that both components could concurrently read and write
the same buffer, swapping ensures that only one component has
a reference to it at any time. To resolve this issue, we annotated
message buffers with thenorace qualifier.

The last class of false positives, causal relationships, comes from
the split-phase operation of TinyOS components. The command/event
pair of a split-phase operation might share a variable, but their
causal relationship means that the event will not fire while the com-
mand is executing. The event could fire during the command only
if another TinyOS component accessed the underlying hardware;
although this would violate the TinyOS programming model, nesC
does not enforce this limitation.

4.3 Optimization
As with data-race detection, nesC exploits the restrictions of

the component model to perform static analysis and optimization.
The nesC compiler uses the application call-graph to eliminate un-
reachable code and to inline small functions. These optimizations
greatly reduce memory footprint, a key savings for embedded sys-
tems. Figure 11 shows a breakdown of the code and data size for
each component in the Surge application. TheTinyOS row repre-
sents the core TinyOS initialization code and task scheduler, which
fits into 396 bytes.C Runtime represents necessary runtime rou-
tines, including floating-point libraries (currently used by multi-
hop routing). Dead code elimination trimmed off an initial 9% of
the Surge program code, and inlining yielded an additional 16%



Component Code size Data size
(Sizes in bytes) inlined noninlined
Runtime

TinyOS 364 666 32
C Runtime 1152 1162 13
RealMain – 72 0

Application components
SurgeM 80 240 44

Multi-hop communication
AMPromiscuous 456 654 9
MultihopM 2646 2884 223
NoCRCPacket 370 484 50
QueuedSend 786 852 461

Radio stack
ChannelMonC 454 486 9
CrcFilter – 34 0
MicaHighSpeedRadioM 1162 1250 61
PotM 50 82 1
RadioTimingC 42 56 0
SecDedEncoding 662 684 3
SpiByteFifoC 344 438 2

Sensor acquisition
ADCM 156 260 2
PhotoTempM 248 360 2

Miscellaneous
NoLeds – 18 0
RandomLFSR 134 134 6
TimerM 1826 1734 118

Hardware presentation
HPLADCC 214 268 11
HPLClock 74 134 0
HPLInit – 10 0
HPLInterrupt – 22 0
HPLPotC – 66 0
HPLSlavePinC – 28 0
HPLUARTM 160 212 0
LedsC – 164 1
SlavePinM 80 124 1
UARTM 78 136 1

Totals 11538 13714 1050

Figure 11: Breakdown of code and data size by component for the
Surge application. A ‘–’ in theinlined column indicates that the
corresponding component was entirely inlined.

savings. Note that inlining increases code size slightly for only
one component –TimerM – but reduces or eliminates many oth-
ers, leading to an overall reduction in footprint. Inlining provides
only a small performance increase (less than a 1% improvement in
CPU utilization for our sample applications) – our CPU intensive
code (mostly low level parts of the radio stack) is not dominated by
function calls.

5. RELATED WORK
The module systems of languages such as Modula-2 (plus de-

scendants) [12, 52, 53] and Ada [20] explicitly import and export
interfaces. However these systems are less flexible than nesC, as
there is no explicit binding of interfaces: an exported interfaceI
is automatically linked to all importers ofI. Standard ML’s mod-
ule system offers similar functionality to nesC, except that circular
“component” (structure ) assemblies cannot be expressed. The
nesC module system is very close to Mesa’s [35], and (coinciden-
tally) uses essentially the same terminology:modulescontain ex-
ecutable code,configurationsconnect components (configurations
or modules) by binding their interfaces, whoseinterface typesmust
match.

Giotto [13], Esterel [4], Lustre [11], Signal [3] and E-FRP [48]
are languages that target embedded, hard real-time, control sys-
tems. They explicitly model the concept of (input) events and
(output) control signals, and offer much stronger time guarantees
than nesC. However, they are not general purpose programming

languages in which one would implement, e.g., a multi-hop radio
stack.

The VHDL [18] hardware description language is based on as-
sembling components (“architecture”) with well-defined interfaces.
Architectures are often specified as independent processes; archi-
tectures that are built out of components always encapsulate the
inner components. In contrast, nesC configurations do not encap-
sulate the components they use, and concurrency crosses compo-
nent boundaries. VHDL’s model matches that of actual hardware,
while nesC’s is inspired by hardware. Another language targeted
to generating hardware is SAFL [38], a first-order functional lan-
guage. To allow hardware generation, SAFL has no recursion and
static data allocation.

Distributed systems [14, 21, 34, 40, 41, 45] and software engi-
neering [2] often model systems as interacting sets of components.
These components are specified by the interfaces they provide or
use. However, the focus is very different from nesC: components
are large-scale (e.g., a database), dynamically loaded and/or linked,
and possibly accessed remotely.

ArchJava [1] has bidirectional interfaces (ports). There are no
interface types (port connections match methods by name and sig-
nature), fan-out is limited to methods with no result, and dispatch of
port methods is dynamic. C# [32] and BCOOPL [5] support events
in classes and interfaces. However the two directions are asym-
metric: registration of an event handler with an event producer is
dynamic.

The languages above, and languages commonly used for pro-
gramming embedded systems (such as C, Ada, Forth), do not offer
the set of features desired in nesC: an interrupt-based concurrency
model, low-level hardware access, component-based programming
and static concurrency checking.

A number of operating systems have explored the use of com-
ponent architectures. The Flux OSKit [10] is a collection of com-
ponents for building operating systems, but provided components
target workstation-like machines. Flux was subsequently reimple-
mented with the help of Knit [43], a language for constructing and
linking components implemented in C. Knit’s component model,
based on that of units [9], is similar to nesC in that components pro-
vide and use interfaces and that new components can be assembled
out of existing ones. Unlike nesC, Knit lacks bidirectional inter-
faces and data race detection. THINK [8] takes the Flux model one
step further by allowing explicit modeling of calls between com-
ponents. This allows clean linking of THINK components across
protection domains or networks. THINK does not employ whole-
program optimization and relies on dynamic dispatch. We do not
believe this model, with its associated runtime cost, is appropri-
ate for network embedded systems. Other component-oriented sys-
tems include Click [36], Scout [37], and thex-kernel [17]. These
systems are more specialized than nesC and do not support whole-
program optimization (apart from several optimizations in Click [24])
or bidirectional interfaces.

Traditional real-time and embedded operating systems, such as
VxWorks [51], QNX [42], and WinCE [33], differ from TinyOS
in a number of respects. These systems are generally much larger
and provide greater functionality than TinyOS, and are intended
for larger-scale embedded systems. We refer the reader to [16] for
a thorough discussion of the differences between these systems.

There have been a few attempts at static detection of race condi-
tions. ESC [7] is in between a type checker and a program verifier;
it has been used to verify user-supplied associations between locks
and variables, and also to enforce ordering constraints on lock ac-
quisition. Sun’s LockLint [46] statically checks for inconsistent
use of locks or lock ordering. As expected, these tools have trouble



with first-class functions and aliasing, and tend to report a subset of
the errors with false positives as well. They also focus on locking
rather than atomicity; we chose the latter to enable more freedom
of implementation, which is particularly important for interrupts.
The next section covers the use of monitors in Mesa.

There are also tools for dynamic detection of races. Eraser [44]
detects unprotected shared variables using a modified binary. “On
the fly” race detectors [31, 39] serialize all accesses to a variable to
verify serializability. These approaches only catch errors that actu-
ally occur during the test run. In addition, dynamic approaches are
less appealing for motes due to their number, resource limitations,
and UI constraints. All of these race detection systems, including
nesC, validate individual variable accesses. They cannot detect a
read-modify-write through a temporary variable in which the read
and write occur in distinct atomic sections.

6. DISCUSSION AND FUTURE WORK
The nesC language is well-suited to the unique challenges of pro-

gramming networked embedded systems. nesC was originally de-
signed to express the concepts embodied in TinyOS, and by reim-
plementing the operating system in nesC, those concepts were re-
fined. nesC’s component model supports holistic system design by
making it easy to assemble applications that include only the nec-
essary OS support. The component model also allows alternate im-
plementations and a flexible hardware/software boundary. nesC’s
concurrency model allows us to write highly concurrent programs
on a platform with very limited resources; the use of bidirectional
interfaces and atomic statements permit a tight integration of con-
currency and component-oriented design. Careful restrictions on
the programming model, including the lack of dynamic allocation
and explicit specification of an application’s call-graph, facilitate
whole-program analyses and optimizations. Aggressive inlining re-
duces memory footprint, and static data-race detection allows the
developer to identify and fix concurrency bugs.

The nesC design opens up several key areas for future work.
These broadly fall into the areas of concurrency support, enhance-
ments to language features, and application to domains other than
networked embedded systems.

Concurrency support

The nesC concurrency model provides short atomic actions, which
can be used to build higher-level synchronization mechanisms such
as semaphores, condition variables, atomic queues, and locks. Some
of these mechanisms imply blocking, but there is nothing in the lan-
guageper sethat prevents support for blocking: we would need to
prohibit blocking calls in atomic sections as well as treat blocking
calls as yield points for task scheduling.

Our current implementation of atomic sections, which works
well for embedded systems, is to disable interrupts. This is ac-
ceptable in part because we prevent blocking and limit the length
of atomic sections. It also depends on the assumption of a unipro-
cessor and on the lack of virtual memory, since a page fault should
not occur within an atomic section. However, these assumptions
can be relaxed by considering alternate implementations of atomic
sections, for example, using non-blocking synchronization primi-
tives [15].

The use of monitors in Mesa [26] is the most directly compa-
rable concurrency model to ours. In Mesa, the authors considered
and rejected atomicity based on non-preemption for several rea-
sons, including the desire to support multiprocessors and virtual
memory. Also, non-preemption alone does not handle interrupts;
we use atomic sections to handle asynchronous updates to shared
state. Finally, Mesa was unable to prevent calls within atomic sec-

tions from yielding the processor. This is not an issue for nesC.

Language enhancements

There are a number of idioms common in TinyOS that are not
well expressed in nesC. Multi-client services with per-client state
are not well-supported. For example, consider a general timer ser-
vice where each client wishes to receive timer events at a different
frequency. Abstract components can be used for this purpose, al-
though they are currently limited in that the internal state of each
instance is private to that instance. We currently use parameterized
interfaces to implement such multi-client services, where the pa-
rameter corresponds to the “client number.” We are not wholly sat-
isfied with this approach, and we plan to investigate a better mech-
anism in the future.

Split-phase operations provide high concurrency with low over-
head, but are difficult to program; reintroducing the convenience
of a threaded model would greatly simplify programming. By au-
tomatically transforming blocking operations into split-phase calls,
we could preserve expressive lightweight concurrency without forc-
ing the programmer to manually build continuations within compo-
nents (as they do now). As it stands, many components are writ-
ten as small finite state machines; atomic state transitions result in
replicated control flow, separating state transitions from their cor-
responding actions. A future direction for nesC is to provide ex-
plicit support for FSM-style decomposition that simplifies compo-
nent design and allows properties of FSM behavior to be statically
verified.

Application to other platforms

We believe that nesC is not limited to the domain of embedded
systems. nesC’s component-oriented structure, focus on concur-
rency, and bidirectional interfaces are valuable concepts in pro-
gramming larger systems, such as enterprise-class applications and
Internet services. To effectively support this broader class of ap-
plications, several extensions to nesC are needed. First, nesC’s
compile-time analyses would need to be extended to handle dy-
namic memory and component allocation, as well as patterns such
as message buffer swap. The static checking of software proto-
cols in Vault [6] may provide an approach to solving these prob-
lems. nesC’s concurrency model should be extended to admit mul-
tiprocessors, blocking operations, and a more general notion of
threads, as discussed above. Such an approach would lead to a rich
set of concurrency primitives specifically tailored for component-
oriented programming of large-scale systems.
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